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Fine structure of defects in radial nematic droplets
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We investigate the structure of defects in nematic liquid crystals confined in spherical droplets and subject
to radial strong anchoring. Equilibrium configurations of the order-parameter tensor field in a Landau–de
Gennes free energy are numerically modeled using a finite-element package. Within the class of axially
symmetric fields, we find three distinct solutions: the familiar radial hedgehog, the small ring~or loop!
disclination predicted by Penzenstadler and Trebin, and a solution that consists of a short disclination line
segment along the rotational symmetry axis terminating in isotropic end points. Phase and bifurcation diagrams
are constructed to illustrate how the three competing configurations are related. They confirm that the transition
from the hedgehog to the ring structure is first order. The third configuration is metastable~in our symmetry
class! and forms an alternate solution branch bifurcating off the radial hedgehog branch at the temperature
below which the hedgehog ceases to be metastable. Dependence on temperature, droplet size, and elastic
constants is investigated, and comparisons with other studies are made.

PACS number~s!: 61.30.Jf, 61.30.Gd, 64.70.Md
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I. INTRODUCTION

The study of equilibrium structures and defects of co
fined liquid crystals has been an area of interest for so
time. Here we consider the problem of spherical droplets
nematic with radial strong-anchoring conditions modeled
a Landau–de Gennes tensor order-parameter model. W
motivated primarily by the succession of papers@1–4#. In @1#
Schopohl and Sluckin illustrated for this problem the stru
ture of a radial hedgehog configuration with an isotro
core. Penzenstadler and Trebin@2# then showed that the cor
should instead broaden to a small ring~or loop! disclination
~of 180° or strength 1/2!. This was validated numerically b
Sonnet, Kilian, and Hess in@3# ~using a tensor representatio
and iterative solution algorithm similar to@5#! and was also
validated in@6# ~using a lattice Monte Carlo model!. Rosso
and Virga @4# argued that the radial hedgehog solution
mained at least metastable over a certain, broader rang
parameters.

Several issues raised by these papers have motivated
our present investigation. A prediction of the first-order n
ture of the transition from the hedgehog to the ring config
ration is stated in@3#. Related to this is the analysis in@4# of
the metastability limits of the hedgehog. In the latter pa
~as well as in@2#!, a certain approximation~constraint on the
degree of order! was used, and the question arose as to w
extent some of the conclusions of those papers might h
been affected by the imposition of this assumption. Th
issues are clarified here where we explicitly delimit coex
ence regions and metastability limits for the competing c
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figurations. In addition, we examine how closely our calc
lated ~unconstrained! solutions conform to the constraint o
@2,4#.

Another matter concerns the dependence of the ph
boundaries on anisotropy of the elastic constants. The
merics in @3# ~as well as@6#! considered only the equal
elastic-constants model; whereas Rosso and Virga@4# pay
considerable attention to the changes in stability and st
tural phase behavior induced by varying the relative mag
tudes of these constants. Here we use a general Lan
model with two elastic constants—because of the stro
anchoring conditions and elastic-constant degeneracy
these models, this is the maximal number of independ
constants that can be considered. We observe marked q
titative differences as the elastic constants are varied.

A final issue concerns the equilibrium radius of the d
clination loop and how it depends on the model paramet
For large droplets, this should depend only on intrinsic p
rameters, and an indication of this is given in@3#. Penzensta-
dler and Trebin@2# perform an analysis that leads to a pr
diction of how the radius of the ring should depend
temperature and elastic constants. We explore this num
cally and find qualitative agreement.

II. MODEL

A. Free energy and scalings

Consider a Landau–de Gennes expansion of the free
ergy in powers of the tensor order parameterQ and its gra-
dient ]Q5$Qab,g%:

F~Q!ªE @ f e~]Q!1 f b~Q!#dV,

where the elastic and bulk free-energy densities are given
6694 ©2000 The American Physical Society
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f eª
L1

2
Qab,gQab,g1

L2

2
Qab,bQag,g

and

f bª
A

2
tr~Q2!2

B

3
tr~Q3!1

C

4
tr~Q!2.

We nondimensionalize this model in terms of the~fixed!
length scalej0ªA27CL1 /B25AL1 /ANI ~where ANIªB2/
27C denotes the nematic-isotropic transition value for a
mogeneous uniaxial bulk sample governed byf b! and res-
caled variables

r̃ª
r

j0
, Q̃ªA27C2

2B2
Q, F̃ªA 27C3

4B2L1
3
F.

In terms of these~after dropping the tildes!, the densities take
the form

f e5
1

2
Qab,gQab,g1

h

2
Qab,bQag,g

and

f b5
t

2
tr~Q2!2A6 tr~Q2!1

1

2
tr~Q2!2,

where

hª
L2

L1
, tª

27AC

B2
5

A

ANI
.

The important dimensionless parameters, then, are
elastic-constant ratioh, reduced temperaturet, and radius of
the droplet in units ofj0 , which we shall denote byR.

These units were chosen to permit easy comparison
@1–4#. The length scalej0 is comparable to the length scale
utilized in @1,3#; it corresponds to a~temperature indepen
dent! coherence length or nematic correlation length, at
nematic-isotropic transition temperature. For this interpre
tion to be completely valid,j0 should depend as well onL2
~see, for example,@7#, Sec. 2.5!, as is the case in@1# and@2#,
Eq. ~15!; we have chosen the definition ofj0 above for con-
venience.

In terms of t, the critical values in the bulk aret50
~‘‘pseudocritical temperature,’’ below which the isotrop
phase is unstable!, t51 ~nematic-isotropic transition tem
perature or ‘‘clearing point’’!, and t5 9

8 ~‘‘superheating
limit,’’ above which the ordered phase does not exist!. Thus
one unit of our reduced temperature roughly correspond
the width of the coexistence range for the nematic and
tropic phases of the material in the bulk, which is arou
1–2 °C for typical low-molecular-weight liquid crystals. I
order for the elastic free-energy density to be positive d
nite, it is necessary that

0,L1 , 0,3L115L2 ,

or
-
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d

-

2 3
5 ,h ~1!

~see@8,9#!.
As a point of reference, we give in Table I the releva

experimental material parameters for MBBA, which we ta
as a representative low-molecular-weight liquid cryst
From these data, we obtain a nematic correlation length~at
the clearing point! of

j05A27CL1

B2
.1.18631027 m'120 nm

and a reduced temperature of

t5
27AC

B2
5

27aC

B2
~T2Tc* !.0.97~T245!.

Here A5a(T2Tc* ), with T in °C andTc* 545 °C, the ex-
perimental pseudocritical point for MBBA. In theory, w
should have the relationshipB2/27aC5Tc2Tc* ; so this
agrees well with the experimentally determined value ofTc

2Tc* 51 °C. Thus we can simply think oft as the number of
degrees above or below the pseudocritical temperature
the given material~here, above or below 45 °C for MBBA!.
Our rescaling of the order parameter for this material giv

Q̃5A27C2

2B2
Q.2.01Q.

Thus for MBBA our order-parameter values are rough
doubled.

One can compare such a Landau model to the Frank e
tic model, under the assumption of uniaxiality

Q5S~ n̂^ n̂2 1
3 I !,

to obtain the relations

TABLE I. Experimental material constants of MBBA.Tc is the
clearing pointTNI , Tc* is the pseudocritical point or supercoolin
limit TSC, A5a(T2Tc* ), K11, K22, andK33 are the Frank elastic
constants atT525 °C.

Constant Value

aa 0.423103 J/m3 °C
Ba 0.643104 J/m3

Ca 0.353104 J/m3

L1
a 0.61310211 J/m

K11
c 0.6310211 J/m

K22
c 0.4310211 J/m

K33
c 0.75310211 J/m

L2 /L1
b <1.6/(1.4560.4)

Tc
c 46 °C

Tc2Tc*
a 1 °C

aE. B. Priestley, P. J. Wojtowicz, and P. Sheng,Introduction to
Liquid Crystals~Plenum, New York, 1975!, p. 168, Table 1.
bT. W. Stinson and J. D. Litser, Phys. Rev. Lett.30, 688 ~1973!.
cL. M. Blinov and V. G. Chigrinov,Electro-optic Effects in Liquid
Crystal Materials~Springer, New York, 1994!, p. xiv, Table I.
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K115K335~2L11L2!S2 and K2252L1S2.

This illustrates the well-known elastic-constant degener
of the model and leads to two slightly different experimen
values forh(5L2 /L1) for MBBA:

h52S K11

K22
21D51.0 or h52S K33

K22
21D51.75.

The elastic constantL2 is difficult to determine, and this
material does not conform exactly to the conditionK11
5K33. Taking into account the reported experimental up
bound onL2 /L1 in Table I, we take reasonable values forh
for this material to be in the range 1.0<h<1.5.

B. Symmetry reduction

Our initial objective was to compare the hedgehog a
ring-disclination solutions. Both of these possess high
grees of symmetry, which we use to reduce the domain
the calculations as well as the number of degrees of free
in the tensor order-parameter field.

1. Geometry

The radial hedgehog configuration is completely sph
cally symmetric; while the ring disclination is axially sym
metric. In addition, the ring solution~as well as the hedge
hog! possesses a reflection symmetry across the p
perpendicular to its rotational symmetry axis. We take thz
axis to be the rotational-symmetry axis and thex-y plane to
be the mirror-symmetry plane, and we thus reduce our g
metric domain to the quarter circle depicted in Fig. 1. W
will use cylindrical coordinates~r, u, z! and give below ap-
propriate symmetry boundary conditions for ther 50 andz
50 boundaries of the domain.

2. Tensor representation

The tensor order parameterQ normally possesses five de
grees of freedom: it is a symmetric, traceless, second-r
tensor. However, the particular configurations we seek
such that theQ tensor always has an eigenvector in the
rection êu ~normal to ther-z plane!. This enables us to rep
resentQ at each point in terms of just three degrees of fr

FIG. 1. Computational domain and boundary conditions.
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dom. For this purpose, we have found it convenient to util
the formalism of@5# ~see also@3#! and use the representatio

Q~r ,z!5q1~r ,z!E11q2~r ,z!E21q3~r ,z!E3 , ~2!

where

E1ª
1

A6 F 21 0 0

0 21 0

0 0 2
G , E2ª

1

& F 1 0 0

0 21 0

0 0 0
G ,

and

E3ª
1

& F 0 0 1

0 0 0

1 0 0
G .

Here the normalization is chosen so that these basis ten
satisfy the orthogonality condition

tr~EiEj !5d i j ,

which helps to simplify some of the formulas.
After integrating with respect tou, we obtain a free en-

ergy of the form

F~q!54pE
V

@ f e~q,“q!1 f b~q!#r dr dz.

The expressions for the densities above~in cylindrical coor-
dinates! are somewhat complicated and are presented in
pendix A.

C. Boundary conditions

We impose a radial strong-anchoring condition on t
outer boundary, requiring theQ tensor to be uniaxial with a
degree of order~scalar order parameter! equal to the bulk
equilibrium value:

Q5A 3
2 S0~ êr ^ êr2

1
3 I ! on r 21z25R2, ~3!

with

S0~ t !5
31A928t

4
. ~4!

This is translated into conditions on the scalar degrees
freedomq1 , q2 , andq3 in Appendix B.

Mirror symmetry across thex-y plane implies the condi-
tions

q1,z5q2,z5q350 on z50.

Rotational symmetry around thez axis implies

q1,r5q25q2,r5q350 on r 50.

The coordinate-system-induced singularity atr 50 gives rise
to this larger number of conditions there.

The numerical finite-element package we utilize belo
takes the problem input in its weak formulation~variational
form, weak/integral form of the Euler-Lagrange equation!,
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as opposed to the strong formulation of the equilibrium c
ditions ~as a Euler-Lagrange system of partial different
equations!. In such a situation, it is necessary to specify on
the essential boundary conditions to be satisfied by the
functions, which for our problem are

q350, on z50

and

q25q350 on r 50.

We see that symmetry demands that the eigenframe of thQ
tensor align with theêr-êu-êz coordinate frame along ther
axis; whileQ is required to be uniaxial along thez axis with
director in the direction ofêz @its scalar order parameter be
ing given along this axis by the values ofS(z)ªq1(0,z)#.

III. NUMERICAL APPROACH

The strong form of the equilibrium conditions~Euler-
Lagrange equations! consists of a coupled system of thre
nonlinear elliptic partial differential equations in the u
known scalar fieldsqi(r ,z), i 51,2,3. The nonlinearity is
mild ~involving only undifferentiated terms in the differentia
equations!, and the equations are singular alongr 50 ~due to
the coordinate system!. There exist modern software pac
ages capable of solving such problems in general, and
have utilized two of them: parallelELLPACK ~//ELLPACK! @10#
and theVECFEM library @11#.

//ELLPACK is a prototype of a domain specific proble
solving environment for elliptic and parabolic partial diffe
ential equations and systems. It contains a wide array of t
for the input of problems~in a high-level specification syn
tax!, generation of grids and meshes, discretizations, solv
visualization, and postprocessing. In the future, much of
type of numerical modeling in which we have engaged h
will be performed with the aid of such environments. Mo
information can be obtained from the references in@10# and
from @12#.

VECFEM is a FORTRAN library of discretizations and solv
ers for finite-element analysis of nonlinear elliptic and pa
bolic partial differential equations and systems. It is le
comprehensive in its functionality than //ELLPACK—in which
it is in fact contained as a submodule—but it is quite po
erful for the problems within its scope. It requires as inpu
finite-element mesh, user-coded subroutines to define
problem~partial differential equations in weak formulation
essential boundary conditions!, parameter choices and se
tings ~tolerances, types of elements, array sizes, etc.!, and an
initial guess. It returns an equilibrium solution, which may
may not be locally stable~or metastable!, calculated to user-
specified stopping tolerances. In addition, it contains m
ules for the evaluation of auxiliary functionals on the calc
lated solutions, eigensolvers for associated eigenva
problems, anda posteriori local error estimators. For mor
information see@11# or @13#.

For our application, in addition to computing equilibriu
solutions, we require their free energies~in order to deter-
mine the globally stable solution and to generate phase
grams! and also the minimum eigenvalue of the seco
variation of the free energy~to determine if a computed so
-
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lution is metastable or not!. For these analyses, we were ab
to use the auxiliary functionals and eigensolvers of
VECFEM library.

The accurate determination of phase boundaries for
problem requires highly accurate values of the free energ
and this motivated us to use high-order finite elements, ty
2 triangular elements. In addition to conforming better to t
curved part of the boundary, they give more accurate so
tion fields and free energies with fewer total triangles a
degrees of freedom than the traditional type-1 triangu
elements—the asymptotic error is fourth order versus sec
in the mesh size~see, for example,@14#!.

For typical runs, we have used 64 triangles per ed
~manually graded to be denser near the origin! giving a total
of 4096 triangles, 8385 nodes~six nodes per triangle!, and
24 385 unknowns~three unknowns per node!. From a crude
initial guess, it can take a few minutes on our workstation
converge; in continuation mode~where parameters are bein
changed slightly and good initial guesses are available!, the
convergence is faster. In the ‘‘nice’’ parameter ranges~mod-
est R, around 20–25 units, say, andt close to zero!, the
accuracy of the computed fields is about 1023 to 1024; while
the accuracy of the associated free energies and minim
eigenvalues is 1026 to 1027. This deteriorates asR increases
and/ort becomes more negative, and some indications of
can be detected in the extremities of some of our graphi

IV. NUMERICAL RESULTS

A. Configurations

Within this model and symmetry class, we find three d
tinct configurations: the familiar radial hedgehog, the ri
disclination of Penzenstadler and Trebin@2#, and a solution
that we refer to as the split-core configuration~consistent
with @15#!. A qualitative rendering of the director fields o
these three solutions is given in Fig. 2.

The radial hedgehog is the most familiar. It is complete
spherically symmetric, everywhere uniaxial with a direct
in the radial direction, and possesses an isotropic core.
give a rendering of one of our calculated hedgehogs in F
3. The order-parameter tensor field is visualized as a field
rectangular boxes~similar to @3#, here down-sampled from
the actual calculated field! aligned with the eigenframe of th
Q tensor with axes scaled in proportion to (2l i1L)/3L
P@0,1#, wherel i , i 51,2,3, are the eigenvalues of the tens
at the point andL is a normalizing constant chosen so th
2L/2<l i<L. Adjacent is a plot of the three eigenvalue
along ther axis. The degenerate~double, minimum! eigen-
values are visually indistinguishable, and the calculated
lution is uniaxial to the level of our discretization error. Th

FIG. 2. Qualitative features of three axially symmetric equili
rium director profiles in a radially aligned spherical nematic drop
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core structure and profile agree with those reported in@1# and
@3#.

Here ~and in all of the figures! all lengths continue to be
expressed in units ofj0 ~the nematic correlation length a
Tc!, which for our reference material MBBA is roughly 12
nm. For this particular sequence of pictures, we also h
takenh50, which corresponds toL250 ~the equal-elastic-
constants caseK115K225K33!. Thus, for a low-molecular-
weight liquid crystal with roughly equal elastic constan
this would correspond to a core size of approximately
mm for this temperature, which is in the coexistence reg
~in the bulk! and close toTc .

In our normalization, a uniaxial tensor is written

Q5A 3
2 S~ n̂^ n̂2 1

3 I !,

whereS is the scalar order parameter~degree of order! andn̂
is the director~unit eigenvector associated with the disti
guished, nondegenerate, eigenvalue ofQ!. This leads to the
relations

tr~Q2!5S2

and

FIG. 3. Hedgehog tensor field and associated eigenvaluesQ
tensor alongr axis. Parameters:h50, t50.75,R525.
e

,
5
n

lmax5A 2
3 S

for the extremal eigenvalue ofQ. Thus in Fig. 3, witht
50.75, we have@from Eq. ~4!#

S0~0.75!5
31)

4
.1.183

and

lmax5A 2
3 S0.0.966,

and we can see that this value is approached asymptotic
just beyond the hedgehog core. As previously noted, th
values are amplified by the rescaling ofQ. For MBBA ~for
which this scaling factor is roughly 2!, this would correspond
to a scalar order parameter~in the traditional scaling! of
roughly 0.48.

The small ring disclination was first predicted by Penze
stadler and Trebin in@2#. It was numerically calculated fo
the equal-elastic-constants case in@3# ~and in @6#, using
Monte Carlo simulation!. It was further analyzed in@4#. We
present a representative of our calculated results in Fig

FIG. 4. Ring-disclination tensor field and associated eigenva
of Q tensor alongr axis. Parameters:h50, t50.75,R525.
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We see that the solution is effectively uniaxial away from t
vicinity of the ring, where it goes through a local biaxi
transition as the director reorients from the radial direction
the boundary to the vertical direction at the origin~without
rotating the eigenframe of theQ tensor!. The radius of the
ring here~for this set of parameters! is roughly the same size
(5j0) as the hedgehog core in Fig. 3.

In @2#, and also in@4#, the pointwise constraint

tr~Q2!5l1
21l2

21l3
252

A

C
~5!

is imposed on the eigenvalues of theQ tensor—this value
results from minimizingA tr(Q2)/21C tr(Q2)2/4 with re-
spect to tr(Q2) ~effectively treating the ‘‘B term’’ in f b as a
negligible perturbation!. The effect of this on the eigenvalu
profiles can be seen by comparing Fig. 4 here~where no such

FIG. 5. Split-core~line disclination segment! tensor field~en-
largement of inner region!. Parameters: h50, t5212, R525.
t

constraint is imposed! with Figs. 5 and 6 of@2#, where the
smallest eigenvalue is forced by the constraint to bow
and down.

The split-core configuration has not been previously
ported to our knowledge. We render an enlargement of
inner area of this solution in Fig. 5. We have used a mu
lower temperature,t5212, in order to obtain features o
reasonable size. The configuration consists of a very s
line disclination segment~of 360° or strength 1, a local pla
nar radial or planar uniaxial structure! along thez axis ~rota-
tional symmetry axis! terminating in isotropic end points~the
split remnants of the isotropic core of the hedgehog!. The
field of eigenvalues associated with thisQ tensor field is a
little more complicated than those of the other two config
rations. Along thez axis, symmetry implies uniaxiality;
whereas approaching the origin from any other direction, o
observes local biaxiality. In Fig. 6, the eigenvalues are p
ted for three different directions of approach.

B. Bifurcation and phase behavior

It is not immediately clear how these three solutions
related to each other. They can be seen to be topologic
equivalent, in that any one can be continuously transform
into any other. Both the ring and the split-core solutio
result from a breaking of the spherical symmetry of t
hedgehog. The ring configuration results from a horizon
spreading of the hedgehog core into a disclination lo
while the split-core solution develops by splitting the core
the vertical direction to form a disclination line segment.

We have explored these numerically. Figure 7 gives
representative bifurcation diagram, which illustrates the
transformations with respect to temperature changes. A c
venient parameter to distinguish the three solutions is p
vided by their scalar order parameter at the originS(0)
5q1(0,0): all three configurations are uniaxial at the orig
~by symmetry!, with the ring being positively ordered in th
vertical direction@S(0).0#, the hedgehog isotropic@S(0)
50#, and the split core negatively ordered@S(0),0#. In
our bifurcation diagram, we plot this value on the vertic
axis against the reduced temperaturet along the horizontal
axis. The similarity to the first-order nematic-isotropic tra
sition in the~uniaxial! bulk is apparent.

The picture now becomes clear. As temperature is
duced, the hedgehog loses its metastability at a certain p
~just beforet525 for the parameters here!, beyond which it
FIG. 6. Eigenvalues ofQ tensor field for inner region of split-core~line disclination segment! configuration~Fig. 5! along r axis ~left!,
along 45° (r 5z) radial line ~center!, alongz axis ~right!.
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continues to exist as a locally unstable equilibrium soluti
Off this point bifurcates the branch that contains the ot
two solutions. The upper part of this branch correspond
the ring solution, which is locally unstable until its radiu
becomes sufficiently large. The lower part is the split co
which is always metastable—at least within our symme
class. The first-order transition from hedgehog to ring
fairly strong, with a coexistence region of almost25,t
,1. The simple bifurcation point~and branch crossing! has
separated slightly under our discretization. This example
‘‘imperfect bifurcation’’ is probably caused here by the fa
that in such a finite-element model as ours, the symm
boundary conditions that are ‘‘natural’’~i.e., those that in-
volve derivatives! are only weakly imposed and only ap
proximately satisfied by the calculated fields; thus the d
crete model adheres to the level of discretization error to
aspect only of the symmetry of the continuous problem. M
tivated by these numerical results, we have constructed e
where an analytical argument proving that for such a mo
the hedgehog must become locally unstable at a sufficie
low temperature in a sufficiently large droplet@15#.

The bifurcation can be similarly viewed as a transiti
with respect toR ~for fixed t!. This is done in Fig. 8, at a
rather low temperaturet5212, where the branching has b
come very steep. It reveals similar features, with the hed
hog becoming locally unstable above a very small criti
value ofR. The bulk value of the scalar order parameter
this temperature is given@again using Eq.~4!, with t5212#
by

S0~212!5
31A105

4
.3.312,

and this value can be seen to be very quickly approache
the center of the droplet for the ring configuration.

Which configuration is stable~global free-energy mini-
mizer! depends on the model parameters~here in dimension-

FIG. 7. Bifurcation diagram of discretized model for radi
hedgehog, ring-disclination, and split-core solutions. Scalar o
parameter at the origin@S(0)# vs reduced temperature~t!. Bold line
indicates stable equilibrium~minimum free energy!; solid line indi-
cates metastable~locally stable!; dashed line indicates not meta
stable ~not locally stable!. Parameters: h50, R525. Transition
value: t50.583. Ring limit/turning point: t.0.947.
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less form! temperaturet, droplet radiusR, and elastic con-
stantsh. This dependence is explored numerically in@3# for
the case of equal elastic constants~h50, Fig. 7 of that pa-
per!. Here we have constructed similar phase diagrams, F
9 and 10, that in addition take into account the effect
different elastic constants (hÞ0) and also indicate the meta
stability limits of the solutions. The solid lines in these tw
figures demark the hedgehog-to-ring transition. For our r
erence material MBBA, we should have 1.0<h<1.5, which
would produce a transition line slightly above the one
h50, which line can be thought of as representative o
low-molecular-weight material with roughly equal elast

er
FIG. 8. Bifurcation diagram of discretized model for radi

hedgehog, ring-disclination, and split-core solutions. Scalar or
parameter at the origin@S(0)# vs droplet radius~R in units of j0!.
Bold line indicates stable equilibrium~minimum free energy!; solid
line indicates metastable~locally stable!; dashed line indicates no
metastable~not locally stable!. Parameters: h50, t5212. Tran-
sition value: R.1.206. Ring limit/turning point: R.1.193.

FIG. 9. Phase diagram with upper coexistence limits for so
tions of discretized model for three different values of elast
constant ratioh50,20.35,20.55. Reduced temperature~t! vs drop-
let radius ~R in units of j0!. Above the solid line, the radia
hedgehog is stable~minimum free energy!. Below this line, the ring
configuration is the global free-energy minimizer. Above the da
dotted line, the ring solution ceases to exist.
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constants—in such a case, the droplet radiiR should be taken
in units of 0.1mm or so, and the temperaturest in °C below
the pseudocritical temperature. The transition lines withh
,0 would correspond to materials withK22.K115K33.

As observed in@3#, for the equal-elastic-constants cas
one obtains stable hedgehogs only for very small drop
(R&2 – 3) or for high temperatures (t*0.5). Here now we
can observe other features. First, the anisotropy in the ela
constants can significantly increase the stability region
the hedgehog@especially as the ratioh5L2 /L1 approaches
its limiting value of 2 3

5 , as given in Eq.~1!#, thus giving
stable hedgehogs at much lower temperatures and in m
larger droplets. Second, the coexistence region of the ph
is rather large, of the order of five times the width of t
coexistence region of the ordered and isotropic phases in
bulk. The split-core solution is always metastable; howev
the ring solution~with the same parameters! always has
lower free energy.

The lower limit of the coexistence region is given by t
bifurcation point, the criticalt or R value at which the hedge
hog solution loses its metastability. It is difficult to loca
these points with high accuracy in our numerical model,
cause of the imperfect bifurcation. We have approxima
them by the horizontal-axis intercept of the line connect
the nearest points on the two~narrowly separated! branches.

Figure 7 corresponds to traversing in the vertical direct
the h50 phase-boundary line in the upper right corner
Fig. 10 ~or Fig. 9!; while Fig. 8 traverses this line in th
horizontal direction in the lower left corner. The phase d
gram in Fig. 9 also indicates how the bifurcation diagram~in
Fig. 7! will change ash is changed: the whole picture shif
to lower temperatures ash is made more negative.

C. Equilibrium radius of ring configuration

In @2# Penzenstadler and Trebin perform a qualitat
analysis to determine the equilibrium radius of the disclin

FIG. 10. Coexistence region forh50 solutions of discretized
model. Reduced temperature~t! vs droplet radius~R in units ofj0!.
Above the solid line, the radial hedgehog is stable~minimum free
energy!. Below this line, the ring configuration is the global fre
energy minimizer. Above the higher dash-dotted line, the ring
lution ceases to exist. Below the lower dash-dotted line, the he
hog ceases to be metastable~locally stable!.
,
ts

tic
r

ch
es

he
r,

-
d
g

n
f

-

-

tion ring. Their model differs from ours in two respects: th
use a ball of infinite radius, and they impose the pointw
constraint~5! on the eigenvalues of the tensor order para
eter. Their analysis is based on comparing the free ener
for a certain ansatz for a hedgehog versus a ring. After m
mizing with respect to the parameter controlling the radius
the disclination loop, they obtain a formula@Eq. ~33! in their
paper# for the equilibrium value, which in our units takes th
form

l0.A0.6510.47h

A4 2t
. ~6!

Figure 11 contains plots of the radius of the ring in o
computed results versust ~for fixed h, top! and versush
~for fixed t, bottom!. The trends and qualitative features a
consistent with Eq.~6!. We observe a very gradual decay
l0 as t is reduced and a fractional-power growth relati

-
e-

FIG. 11. Equilibrium radius of the ring configuration vst ~re-
duced temperature! for three different values of the elastic-consta
ratio h ~top!, and vsh for three different values oft ~bottom!.
Droplet radiusR520.
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to h; although the divergence ofl0 occurs ast approaches
9
8 , the superheating limit of the ordered phase in the bulk@as
opposed tot→0, in Eq. ~6! above#. Given the assumption
and approximations of the analysis in@2#, we expect the
quantitative agreement to be better for more negative va
of t. For MBBA, with 1.0<h<1.5, the lower part of Fig. 11
indicates a ring radius of roughly 11j0'1.3mm near the
clearing point.

In comparison, the length of the line disclination of th
split-core solution is shorter~than the radius of the ring! for
moderate temperatures. It also appears to approach a lim
value of the order of a single unit ofj0 or less. See Fig. 12

D. Degree of order and biaxiality

The pointwise constraint~5! utilized in the analysis of
@2,4# in our units corresponds to

tr~Q2!52
t

2
.

Except for the vicinity of defects and disclinations, the ten
fields we compute are essentially uniaxial with degree
order equal to the bulk equilibrium value for that tempe
ture:

tr~Q2!'S0
25F31A928t

4 G2

52
t

2
1O~A2t !

as t→2`. These values agree asymptotically~deep in the
nematic phase!; although they are not particularly close ov
the parameter ranges where we have done most of
computing—the rationale for Eq.~5! relies on B2

!224AC, or 9
8 !2t in our units.

FIG. 12. Radius of ring (h ring) and half length of split-core line
disclination segment (zsplit) vs reduced temperature~t!. Bold line
indicates stable equilibrium~minimum free energy!; solid line indi-
cates metastable~locally stable!; dashed line indicates not meta
stable ~not locally stable!. Parameters: h50, R525. Transition
value: t.0.583. Ring limit/turning point: t.0.947.
es

ng
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Regarding the consideration of such a constraint in g
eral, one can ask to what extent our calculated fields conf
to ~or deviate from! tr(Q2)5S0

2. A convenient parameter to
gauge this is given by

a2
ª12

tr~Q2!

S0
2

, ~7!

which varies between 0 and 1, taking the value 0 when
order condition is exactly satisfied~as is the case in our oute
boundary conditions, for example! and the value 1 whenQ is
zero ~isotropic! and deviates maximally from the condition
We have plotted this in Figs. 13 and 14 for representat
solutions of our three kinds, and we can see in these
localization of this quantity.

As well as coercing this degree of order, the bulk pote
tial f b penalizes configurations for departing from uniaxial
in general. Sometimes configurations do, however, ‘‘escap
to biaxiality, as we have seen above and has been dem
strated elsewhere. For such a model as ours, these regio
biaxiality are again localized to the vicinity of disclination
and such highly strained regions. To quantify and visual
this, we utilize the parameter

b2
ª126

tr~Q3!2

tr~Q2!3
~8!

from @16# ~which has been utilized for a similar purpose
@17#!. As with a2 above, this parameter takes values in@0,1#,
equals 0 if and only ifQ is uniaxial, and 1 when it is ‘‘maxi-
mally biaxial.’’ We plot this for representative ring and spli
core solutions in Figs. 13 and 14—the radial hedgehog
everywhere uniaxial.

We see that the departure from uniaxiality is very high
localized. Also, comparing the variations ofb2 with those of
a2, for both the ring and the split-core solutions, we can s
the slightly shorter length scale of the escape to biaxia
~compared to the scale of variations of the degree of ord!,
as this is determined by a ‘‘biaxial coherence length’’@see
@2#, Eq. ~14!#. Deeper in the nematic phase, we expect to
this situation reversed, since the biaxial coherence len
scales like 1/A4 2t ~in our units!; whereas the nematic corre
lation length~coherence length! scales like 1/A2t.

V. CONCLUSIONS AND DISCUSSION

We summarize the main observations that have b
made. The transition from the radial hedgehog configurat
to the ring is first order and in fact rather strongly so~at least
relative to the first-order nematic-isotropic transition in t
bulk!. The dependence of certain features on the elastic c
stants can be pronounced, and in particular the expandin
the stability and metastability regions of the hedgehog as
ratio L2 /L1 becomes more negative is consistent with@4#.
The equilibrium radius of the ring follows~at least qualita-
tively! the prediction of@2#; the ranges where we expe
better quantitative agreement are for more negative value
t and are beyond the reach of our code. With respect to
constraint used in@2,4#, we have found no instance wher
significant qualitative differences were caused by this;
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though quantitative agreement can be poor for the hig
temperatures.

The split-core solution serves to complete the bifurcat
picture. It is metastable in our symmetry class. We ques
whether or not it will remain metastable in a full thre
dimensional calculation~in which axial symmetry is not im-

FIG. 13. Order condition parameter@a2, Eq. ~7!# for hedgehog
~top! and ring~middle, inner region!. Degree of biaxiality paramete
@b2, Eq. ~8!# for ring ~bottom, enlargement of local region!. Param-
eters: h50, t50.75,R525.
er

n
n

posed!. There are some factors working against it. First, fro
an elastic point of view, the 360° disclination is an unfavo
able configuration, usually stable only for very small cap
laries and such@3,18#. Second, from the point of view of the
bulk potential, we know that the negative-Spotential well of
f b ~in which the scalar order parameter ofQ approximately
lies for those points along the disclination line segment! is
metastable in the bulk only under the restriction thatQ be
uniaxial ~which is forced upon us here along thez axis by
symmetry!; the negative-Sequilibrium is unstable in the bulk
with respect to biaxial perturbations. It is possible that, on
unshackled from the constraints of symmetry, the discli
tion line segment of the split-core configuration wou
broaden itself to a~vertically oriented! ring, as has been sug
gested to us@19#.

One can contemplate ways to enhance the stability of
split-core solution. One possibility would be to apply a ma
netic field using a material with a negative magne
anisotropy—a positive anisotropy would likely only furthe
discourage it. Another possibility would be to use elonga
~ellipsoidal! droplets. In particular, if these droplets we
very small~submicrometer size!, then one would approach
situation similar to the~small! cylindrical capillary case,

FIG. 14. Order condition parameter@a2, Eq. ~7!, top# and de-
gree of biaxiality parameter@b2, Eq.~8!, bottom# for split-core~line
disclination segment! solution ~enlargement of inner region!. Pa-
rameters: h50, t5212, R525.
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mentioned above, where planar radial structures do ind
become stable. In fact, such configurations have been fo
in Monte Carlo simulations of such droplets, which are
interest in HPDLCs~holographically formed polymer dis
persed liquid crystals! @20#. The effect of electric or magneti
fields on hedgehogs would also seem to depend on whe
the material has a positive or negative dielectric or magn
anisotropy. In the positive case, we would expect the field
encourage the ring configuration and broaden its rad
while we would anticipate the opposite to be true for a liqu
crystal with a negative anisotropy.

We make two points of a more general nature. First,
advocate the type of full numerical bifurcation analysis do
here, for investigations of this type in general. The mo
direct approach of numerically minimizing discretized fr
energies allows one to compute only metastable config
tions; as we have seen here, the~locally! unstable solution
branches connect the various branches and complete the
ture, allowing one to delimit metastability regions and su
The packages we have used here are not equipped for
matic bifurcation analysis~path following, detection of bifur-
cation points, branch switching, etc.!—we could find no such
package at the time—and so the information had to be
together in pieces. A public-domain package that does
clude full numerical bifurcation capabilities for scalar ellipt
partial differential equations isPLTMG @21#. A package that
came to our attention later is Cliffe’sENTWIFE code@22,23#.
Commercial packages exist for other specialized appl
tions, such as computational fluids, structural engineer
etc.

Second, phenomenological~order-parameter! models
such as these Landau models are mesoscopic in nature.
are appropriate for the type of fine-scale analysis done h
they are not of use for truly macroscopic modeling, for e
ample, of display devices. When they are nondimensio
ized, one obtains a generic coupling of the form

S j

dD 2

3~elastic!1~bulk!,

wherej is an intrinsic~molecular! length scale andd a geo-
metric one. Thus ford@j the problem is badly singularly
perturbed. Moreover, in the ‘‘outer limit’’~as j/d→0!, the
reduced problem is ill posed: only the bulk terms remainQ
is coerced to be uniaxial with the appropriate bulk equil
rium degree of order, but the orientation of the director
completely free. Thus ford@j significantly different tensor
fields can have nearly indistinguishable free energies~below
discretization, numerical-resolution levels!. This intrinsic
mathematical ill conditioning severely challenges bo
asymptotic approaches~which require the piecing together o
well-defined inner and outer solutions! and numerical ap-
proaches~based upon graded meshes and such!.

As a final point, we emphasize that all of the structu
we have explored here are very small in size, of the or
of the core of the radial hedgehog@which scales like
A(112h/3)/(2t) in our units, see@1,15##. For typical low-
molecular-weight liquid crystals, it is not clear if these cou
ever be detected experimentally; for other materials~polymer
liquid crystals, for example!, it might be possible. There ar
other ringlike ~and some line! structures in liquid-crysta
ed
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droplets that have been observed experimentally, as we
analyzed theoretically and calculated numerically@24–29#.
These are different structures, with a much larger radius r
~and overall droplet size and such! than those explored here
Some of these other systems also involve other aspects~such
as external fields, weak surface anchoring, chirality, or ne
tive dielectric anisotropy!, and the analysis of them is usual
in terms of the~macroscopic! Oseen-Frank elastic continuum
theory. Because of the ill conditioning discussed above,
were unable to expand our domain to a size sufficient
capture one of these other, larger configurations. Much of
work reported here has been adapted from@30#, where other
aspects of this problem are also addressed.

ACKNOWLEDGMENTS

The authors are grateful to Professor Hans-Rainer Tre
~Stuttgart! and Professor Epifanio G. Virga~Pavia! for their
encouragement in this project. We also gratefully ackno
edge the input of Professor Oleg D. Lavrentovich and P
fessor Peter Palffy-Muhoray~Kent!. We appreciate the help
of the parallelELLPACK group at Purdue~especially Profes-
sor John R. Rice, Professor Elias N. Houstis, Ann Christ
Catlin, and Dr. Sanjiva Weerawarana! for prerelease version
of their software and for assistance in porting their packa
and theVECFEM library. This work was supported by th
National Science Foundation under Grant Nos. DMR 8
20147~ALCOM Center! and DMS-9870420~E.C.G.!.

APPENDIX A: FREE-ENERGY DENSITY IN
CYLINDRICAL COORDINATES

For our application, we require the free-energy density
cylindrical coordinates and subject to the additional rest
tion thatQ take the form~2!. The needed expressions can
derived in various ways, for instance, by using the covari
tensor calculus. Alternatively, one can proceed directly fr
the Cartesian representation

Q~r ,u,z!5q1~r ,z!R~u!E1R~u!T1q2~r ,z!R~u!E2R~u!T

1q3~r ,z!R~u!E3R~u!T,

whereR(u) is the rotation matrix

R~u!5F cosu 2sinu 0

sinu cosu 0

0 0 1
G .

A computer algebra system is very helpful, and for this
have utilized theMAPLE package. The following expression
are obtained~for generalL1 , L2 , A, B, andC!:

f e5
L1

2 Fq1,r
2 1q2,r

2 1q3,r
2 1q1,z

2 1q2,z
2 1q3,z

2 1
1

r 2
~4q2

21q3
2!G

1
L2

2 F1

6
~q1,r

2 13q2,r
2 13q3,r

2 14q1,z
2 13q3,z

2 !

1
1

)
~2q1,rq2,r2q1,rq3,z12q1,zq3,r1)q2,rq3,r !
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1
1

r S 2
2

)
q1,rq21

2

)
q1,zq312q2q2,r

12q2q3,z1q3q3,r D 1
1

2r 2
~4q2

21q3
2!G

and

f b5
A

2
~q1

21q2
21q3

2!2
B

3 S 2
A6

2
q1q2

21
A6

4
q1q3

2

1
3&

4
q2q3

21
A6

6
q1

3D 1
C

4
~q1

21q2
21q3

2!2.
ol

s

APPENDIX B: OUTER BOUNDARY CONDITIONS

The radial strong-anchoring condition~3! can be trans-
formed into the following boundary conditions on the u
known scalar fieldsq1 , q2 , andq3 :

q1~r ,z!5S 12
3r 2

2R2D S0 , q2~r ,z!5
)r 2

2R2 S0 ,

and

q3~r ,z!5
)rz

R2 S0 on r 21z25R2.
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